Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. CRIS
  3. Publication
  4. In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19
 
  • Details
Options

In silico Analyses of Immune System Protein Interactome Network, Single-Cell RNA Sequencing of Human Tissues, and Artificial Neural Networks Reveal Potential Therapeutic Targets for Drug Repurposing Against COVID-19

Journal
Frontiers in Pharmacology
ISSN
1663-9812
Date Issued
2021-02-26
Author(s)
Andrés López-Cortés
Facultad de Ciencias de la Salud Eugenio Espejo  
GUEVARA RAMIREZ, ALEXANDRA PATRICIA  
Facultad de Ciencias de la Salud Eugenio Espejo  
Nikolaos C. Kyriakidis
Carlos Barba-Ostria
Ángela León Cáceres
Esteban Ortiz-Prado
Cristian R. Munteanu
Santiago Guerrero
Facultad de Ciencias de la Salud Eugenio Espejo  
Eduardo Tejera
Doménica Cevallos-Robalino
Ana María Gómez-Jaramillo
Katherine Simbaña-Rivera
Gabriela Pérez-M
Silvana Moreno
Adriana Granizo-Martínez
Facultad de Ciencias de la Salud Eugenio Espejo  
Yunierkis Pérez-Castillo
ZAMBRANO ESPINOSA, ANA KARINA  
Facultad de Ciencias de la Salud Eugenio Espejo  
Alejandro Cabrera-Andrade
Carolina Proaño-Castro
Jennyfer M. García-Cárdenas
Facultad de Ciencias de la Salud Eugenio Espejo  
Jhommara Bautista
Nelson Varela
Luis Abel Quiñones
Lourdes Puig San Andrés
Facultad de Ciencias de la Salud Eugenio Espejo  
Andreina Quevedo
Facultad de Ciencias de la Salud Eugenio Espejo  
PAZ Y MIÑO CEPEDA, CESAR ANTONIO  
Facultad de Ciencias de la Salud Eugenio Espejo  
DOI
10.3389/fphar.2021.598925
URL
https://cris.ute.edu.ec/handle/123456789/524
Abstract
<jats:p><jats:bold>Background:</jats:bold>There is pressing urgency to identify therapeutic targets and drugs that allow treating COVID-19 patients effectively.</jats:p><jats:p><jats:bold>Methods:</jats:bold>We performed<jats:italic>in silico</jats:italic>analyses of immune system protein interactome network, single-cell RNA sequencing of human tissues, and artificial neural networks to reveal potential therapeutic targets for drug repurposing against COVID-19.</jats:p><jats:p><jats:bold>Results:</jats:bold>We screened 1,584 high-confidence immune system proteins in ACE2 and TMPRSS2 co-expressing cells, finding 25 potential therapeutic targets significantly overexpressed in nasal goblet secretory cells, lung type II pneumocytes, and ileal absorptive enterocytes of patients with several immunopathologies. Then, we performed fully connected deep neural networks to find the best multitask classification model to predict the activity of 10,672 drugs, obtaining several approved drugs, compounds under investigation, and experimental compounds with the highest area under the receiver operating characteristics.</jats:p><jats:p><jats:bold>Conclusion:</jats:bold>After being effectively analyzed in clinical trials, these drugs can be considered for treatment of severe COVID-19 patients. Scripts can be downloaded at<jats:ext-link>https://github.com/muntisa/immuno-drug-repurposing-COVID-19</jats:ext-link>.</jats:p>

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support by

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science