Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Repository logo
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • People
  • Statistics
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "aerobic plate"

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    Some of the metrics are blocked by your 
    consent settings
    Publication
    Static responses for Graphene nanoplatlet reinforced aerobic sport plate
    (2025-06-25)
    Zang Zhaowei
    ;
    Song Zhiqiang
    ;
    Li Aiyun
    ;
    HABIBI, MOSTAFA  
    ;
    Albaijan, Ibrahim
    ;
    Dingfang Zhang
    This work applies a detailed shear deformable based kinematic modeling of a graphene origami reinforced nanocomposite aerobic sport plate subjected to thermal and mechanical loading. The proposed model is application for analysis of the reinforced aerobic sport plate. The analytical bending analysis was performed using the virtual work principle. The behavioral relations were extended using the overall material properties derived from the previously developed relations of the experimental and statistical studies. The nanocomposite aerobic sport was composed of a copper matrix reinforced with graphene origami as a novel reinforcement. The overall material properties were developed with changes of thermal loads, volume fraction and folding parameter of aerobic sport plate. The numerical results were derived using the analytical works in terms of the significant import parameters. An increase in the displacements is observed with an increase in the thermal loads and folding parameter as well as decrease in volume fraction.

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback

Hosting & Support by

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science