Browsing by Subject "ABTS"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
- Some of the metrics are blocked by yourconsent settings
Publication Functional, Antioxidant, and Antimicrobial Profile of Medicinal Leaves from the Amazon(MDPI AG, 2025-08-05) ;Gabriela Méndez ;Elena Coyago-Cruz ;Paola Lomas ;Marco CernaThe Amazon region is home to a remarkable diversity of plant species that are used in traditional medicine and cuisine. This study aimed to evaluate the functional, antioxidant, and antimicrobial properties of the leaves of Allium schoenoprasum, Brugmansia candida (white and pink), and Cyclanthemum bipartitum. Bioactive compounds (L-ascorbic acid, organic acids, carotenoids, phenolic compounds, and chlorophylls) were quantified using liquid chromatography. The ABTS and DPPH methods were used to assess the antioxidant capacity. Additionally, the antimicrobial activity against Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus mutans, Candida albicans, and Candida tropicalis was evaluated. The results revealed a high content of L-ascorbic acid (7.6 mg/100 g dry weight) and total carotenoids (509.0 mg/100 g dry weight), as well as high antioxidant capacity (4.5 mmol TE/100 g dry weight) and broad antimicrobial activity in Brugmansia candida ‘pink’. The White variety had the highest concentration of total chlorophylls (1742.8 mg/100 g DW), Cyclanthemum bipartitum had the highest total organic acid content (2814.5 mg/100 g DW), and Allium schoenoprasum had the highest concentration of total phenolic compounds (11,351.6 mg/100 g DW). These results constitute a starting point for future research, emphasizing the potential health risks that certain species may pose. - Some of the metrics are blocked by yourconsent settings
Publication Lacmellea oblongata and Other Undervalued Amazonian Fruits as Functional, Antioxidant, and Antimicrobial Matrices(MDPI AG, 2025-07-29) ;Elena Coyago-Cruz ;Gabriela Méndez ;Ruth Escobar-Quiñonez ;Marco CernaThe Amazon represents a key source of food biodiversity and is home to native fruits with high nutritional and functional potential, many of which remain largely unstudied. This research aimed to evaluate the presence of bioactive compounds, as well as the antioxidant and antimicrobial activity of Miconia crenata, Grias neuberthii, Lacmellea oblongata, Pourouma cecprofiilia, and Annona edulis. Physical and chemical parameters, mineral content (atomic absorption), vitamin C, organic acid, carotenoids, chlorophylls, and phenols (liquid chromatography), antioxidant activity (ABTS, DPPH), and antimicrobial activity (against Candida albicans, Candida tropicalis, Escherichia coli, Staphylococcus aureus, and Streptococcus mutans) were determined. High concentrations of calcium, syringic acid, and antioxidant activity were found in the fruits of Miconia crenata; malic and caffeic acids in Grias neuberthii; citric acid, naringenin, and antioxidant activity in Lactuca oblongata; potassium, chlorogenic acid, and ferulic acid in Pourouma cecropiifolia; and tartaric acid and gallic acid in Annona edulis. Additionally, low antimicrobial activity was observed in M. crenata against E. coli (2.7 mg/mL), G. neuberthii against S. aureus (10.3 mg/mL), and L. oblongata against S. mutans (10.4 mg/mL), C. albicans (20.8 mg/mL), and C. tropicalis (20.8 mg/mL). The results confirm that these Amazonian fruits are a relevant source of functional bioactive compounds, highlighting their potential for use in the food, pharmaceutical, and biotechnology sectors.